Representations and cohomologies of relative Rota-Baxter Lie algebras and applications
نویسندگان
چکیده
In this paper, first we give the notion of a representation relative Rota-Baxter Lie algebra and introduce cohomologies with coefficients in representation. Then classify abelian extensions algebras using second cohomology group, skeletal 2-algebras third group as applications. At last, established general framework representations algebras, which is consistent associative literature, Applications are also given to classifying 2-algebras.
منابع مشابه
On Differential Rota-baxter Algebras
Abstract. A Rota-Baxter operator of weight λ is an abstraction of both the integral operator (when λ = 0) and the summation operator (when λ = 1). We similarly define a differential operator of weight λ that includes both the differential operator (when λ = 0) and the difference operator (when λ = 1). We further consider an algebraic structure with both a differential operator of weight λ and a...
متن کاملFree Rota – Baxter Algebras and Rooted Trees
A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota–Baxter algebras were obtained by Rota and Cartier in the 1970s and a third ...
متن کاملAn Identity in Rota-baxter Algebras
We give explicit formulae and study the combinatorics of an identity holding in all Rota-Baxter algebras. We describe the specialization of this identity for a couple of examples of Rota-Baxter algebras.
متن کاملRota–baxter Algebras, Singular Hypersurfaces, and Renormalization on Kausz Compactifications
We consider Rota-Baxter algebras of meromorphic forms with poles along a (singular) hypersurface in a smooth projective variety and the associated Birkhoff factorization for algebra homomorphisms from a commutative Hopf algebra. In the case of a normal crossings divisor, the Rota-Baxter structure simplifies considerably and the factorization becomes a simple pole subtraction. We apply this form...
متن کاملcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.03.027